Stability of an inverse problem for the discrete wave equation and convergence results
نویسندگان
چکیده
Using uniform global Carleman estimates for semi-discrete elliptic and hyperbolic equations, we study Lipschitz and logarithmic stability for the inverse problem of recovering a potential in a semi-discrete wave equation, discretized by finite differences in a 2-d uniform mesh, from boundary or internal measurements. The discrete stability results, when compared with their continuous counterparts, include new terms depending on the discretization parameter h. From these stability results, we design a numerical method to compute convergent approximations of the continuous potential. Résumé A partir d’inégalités de Carleman pour des équations aux dérivées partielles dicrétisées elliptiques et hyperboliques, nous étudions la stabilité Lipschitz et logarithmique du problème inverse de détermination du potentiel dans une équation des ondes semi-discrétisée, par un schéma aux différences finies sur un maillage 2-d uniforme, à partir de mesures internes ou frontières. Quand ils sont comparés avec leur contrepartie continue, les résultats de stabilité dans le cadre discret contiennent de nouveaux termes dépendants du pas h du maillage utilisé. C’est à partir de ces résultats que nous décrivons une méthode numérique de calcul d’approximations convergentes du potentiel continu.
منابع مشابه
A regularization method for solving a nonlinear backward inverse heat conduction problem using discrete mollification method
The present essay scrutinizes the application of discrete mollification as a filtering procedure to solve a nonlinear backward inverse heat conduction problem in one dimensional space. These problems are seriously ill-posed. So, we combine discrete mollification and space marching method to address the ill-posedness of the proposed problem. Moreover, a proof of stability and<b...
متن کاملStability of the Modified Euler Method for Nonlinear Dynamic Analysis of TLP
Efficiency of numerical methods is an important problem in dynamic nonlinear analyses. It is possible to use of numerical methods such as beta-Newmark in order to investigate the structural response behavior of the dynamic systems under random sea wave loads but because of necessity to analysis the offshore systems for extensive time to fatigue study it is important to use of simple stable meth...
متن کاملInverse scattering problem for the Impulsive Schrodinger equation with a polynomial spectral dependence in the potential
In the present work, under some di¤erentiability conditions on the potential functions , we rst reduce the inverse scattering problem (ISP) for the polynomial pencil of the Scroedinger equation to the corresponding ISP for the generalized matrix Scrödinger equation . Then ISP will be solved in analogy of the Marchenko method. We aim to establish an e¤ective algorithm for uniquely reconstructin...
متن کاملParameter determination in a parabolic inverse problem in general dimensions
It is well known that the parabolic partial differential equations in two or more space dimensions with overspecified boundary data, feature in the mathematical modeling of many phenomena. In this article, an inverse problem of determining an unknown time-dependent source term of a parabolic equation in general dimensions is considered. Employing some transformations, we change the inverse prob...
متن کاملSolving a nonlinear inverse system of Burgers equations
By applying finite difference formula to time discretization and the cubic B-splines for spatial variable, a numerical method for solving the inverse system of Burgers equations is presented. Also, the convergence analysis and stability for this problem are investigated and the order of convergence is obtained. By using two test problems, the accuracy of presented method is verified. Additional...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013